Abstract

Plants developing into the flowering stage undergo major physiological changes. Because flowers are reproductive tissues and resource sinks, strategies to defend them may differ from those for leaves. Thus, this study investigates the defences of flowering plants by assessing processes that sustain resistance (constitutive and induced) and tolerance to attack. We exposed the annual plant Brassica nigra to three distinct floral attackers (caterpillar, aphidand bacterial pathogen)and measured whole-plant responses at 4, 8and 12 days after the attack. We simultaneously analysed profiles of primary and secondary metabolites in leaves and inflorescencesand measured dry biomass of roots, leavesand inflorescences as proxies of resource allocation and regrowth. Regardless of treatments, inflorescences contained 1.2 to 4 times higher concentrations of primary metabolites than leaves, and up to 7 times higher concentrations of glucosinolates, which highlights the plant's high investment of resources into inflorescences. No induction of glucosinolates was detected in inflorescences, but the attack transiently affected the total concentration of soluble sugars in both leaves and inflorescences. We conclude that B.nigra evolved high constitutive rather than inducible resistance to protect their flowers; plants additionally compensated for damage by attackers viathe regrowth of reproductive parts. This strategy may be typical of annual plants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.