Abstract

Interest in “green nanotechnology” in nanoparticle biosynthesis is growing among researchers. Nanotechnologies, due to their physicochemical and biological properties, have applications in diverse fields, including drug delivery, sensors, optoelectronics, and magnetic devices. This review focuses on the green synthesis of silver nanoparticles (AgNPs) using plant sources. Green synthesis of nanoparticles is an eco-friendly approach, which should be further explored for the potential of different plants to synthesize nanoparticles. The sizes of AgNPs are in the range of 1 to 100 nm. Characterization of synthesized nanoparticles is accomplished through UV spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, and scanning electron microscopy. AgNPs have great potential to act as antimicrobial agents. The green synthesis of AgNPs can be efficiently applied for future engineering and medical concerns. Different types of cancers can be treated and/or controlled by phytonanotechnology. The present review provides a comprehensive survey of plant-mediated synthesis of AgNPs with specific focus on their applications, e.g., antimicrobial, antioxidant, and anticancer activities.

Highlights

  • The utilization of nanotechnology for constructing nanoscale products in research and development divisions is growing [1]

  • Our results indicate that the size of nanoparticles decreases when pH increases. pH values in the range of 2–14 play an important role in the synthesis of AgNPs

  • The antimicrobial activity of AgNPs is widely recognized, though their activity can change with physical characteristics of the nanoparticle, such as its shape, mass, size, and composition, and conditions of its synthesis, such as by pH, ions, and macromolecules [74]

Read more

Summary

Introduction

The utilization of nanotechnology for constructing nanoscale products in research and development divisions is growing [1]. Biosynthesis reactions can be modulated to transform the shape and size of nanoparticles by using different metal concentrations and amounts of plant extract in the reaction medium [27, 40]. Plant extracts contain aldehyde groups, which are responsible for the reduction of silver ions into metallic AgNPs. The different functional group, –C = 0, C = N, indicates amide I of polypeptides that are responsible for the capping of ionic substances into metallic nanoparticles.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.