Abstract
Mosquitoes (Diptera: Culicidae) are a key threat for millions of people worldwide, since they act as vectors for devastating parasites and pathogens. Mosquito young instars are usually targeted with organophosphates, insect growth regulators and microbial control agents. Indoors residual spraying and insecticide-treated bed nets are also employed. However, these chemicals have strong negative effects on human health and the environment. Newer and safer tools have been recently implemented to enhance control of mosquitoes. In this review, I focus on characterization, effectiveness, and non-target effects of mosquitocidal nanoparticles synthesized using botanical products (mosquitocidal nanoparticles, MNP). The majority of plant-fabricated MNP are silver ones. The synthesis of MNP is usually confirmed by UV-visualization spectroscopy, followed by scanning electron microscopy or transmission electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction studies. Interestingly, plant-synthesized metal nanoparticles have been reported as effective ovicides, larvicides, pupicides, adulticides, and oviposition deterrents against different mosquito species of medical and veterinary importance. Few parts per million of different MNP are highly toxic against the malaria vector Anopheles stephensi, the dengue vector Aedes aegypti, and the filariasis mosquito Culex quiquefasciatus. However, despite the growing number of evidences about the effectiveness of MNP, moderate efforts have been carried out to shed light on their possible non-target effects against mosquito's natural enemies and other aquatic organisms. In the final section, particular attention was dedicated to this issue. A number of hot areas that need further research and cooperation among parasitologists and entomologists are highlighted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.