Abstract

Lithium (Li) metal batteries are among the most promising devices for high energy storage applications but suffer from severe and irregular Li dendrite growth. Here, it is demonstrated that the issue can be well tackled by precisely designing the leaf-like membrane with hierarchical structure and exquisite fluidic channels. As a proof of concept, plant leaf-inspired membrane (PLIM) separators are prepared using natural attapulgite nanorods. The PLIM separators feature super-electrolyte-philicity, high thermal stability and high ion-selectivity. Thus, the separators can guide uniform and directed Li growth on the Li anode. The Li//PLIM//Li cell with limited Li anode shows high Coulombic efficiency and cycling stability over 1500h with small overpotential and interface impedance. The Li//PLIM//S battery exhibits high initial capacity (1352 mAh g-1 ), cycling stability (0.019% capacity decay per cycle at 1 C over 500 cycles), rate performance (673 mAh g-1 at 4 C), and high operating temperature (65°C). The separators can also effectively improve reversibility and cycling stability of the Li/Li cell and Li//LFP battery with carbonate-based electrolyte. As such, this work provides fresh insights into the design of bioinspired separators for dendrite-free metal batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.