Abstract

Abstract: Brown spot, Mosaic, Grey spot, and Rust all significantly reduce apple yield. Rust is a sign of Foliar illness in this instance. The primary factor influencing apple output is the occurrence of apple leaf diseases, which results in significant yearly economic losses. Therefore, it is very important to research apple leaf disease identification. Plants are frequently attacked by pests, bacterial diseases, and other microorganisms. Inspection of the leaves, stem, or fruit usually identifies the attack's signs. Powdery Mildew and Leaf Blight are two common plant diseases that can cause severe harm if not treated quickly. In the realm of agriculture, image processing is frequently utilized for classification, detection, grading, and quality control. Finding and identifying plant diseases is crucial, especially when trying to produce fruit of the highest caliber. The real-time identification of apple leaf diseases is addressed in this research using a deep learning strategy that is based on enhanced convolutional neural networks (CNNs). This study uses data augmentation and image annotation tools to create the foliar disease dataset, which is made up of complex images captured in the field and laboratories. Overall, we can identify the illness present in plants on a massive scale by utilizing machine learning to train the vast data sets that are publically available. The project explains how to identify plant leaf diseases, how they affect plant yield, and which pesticides should be used to treat them. in agriculture. To monitor huge plant fields and automatically identify disease symptoms as soon as they develop on plant leaves, research on automatic plant disease is crucial. In this essay, we'll demonstrate how to identify plant illnesses by obtaining photos of their leaves

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.