Abstract

The active role of higher plants in the weathering of silicate minerals and rocks is still a question for debate. The present work aimed at providing experimental evidence of the important role of a range of crop plants in such processes. In order to quantitatively assess the possible effect of these diverse plant species on the weathering of a basaltic rock, two laboratory experiments were carried out at room temperature. These compared the amounts of elements released from basalt when leached with a dilute salt solution in the presence or absence of crop plants grown for up to 36 days. For Si, Ca, Mg, and Na, plants resulted in an increase in the release rate by a factor ranging from 1 to 5 in most cases. Ca and Na seemed to be preferentially released relative to other elements, suggesting that plagioclase dissolved faster than the other constituents of the studied basalt. Negligible amounts of Fe were released in the absence of plants as a consequence of the neutral pH and atmospheric pO 2 that were maintained in the leaching solution. However, the amounts of Fe released from basalt in the presence of plants were up to 100- to 500-fold larger than in the absence of plants, for banana and maize. The kinetics of dissolution of basalt in the absence of plants showed a constantly decreasing release rate over the whole duration of the experiment (36 days). No steady state value was reached both in the absence and presence of banana plants. However, in the latter case, the rates remained at a high initial level over a longer period of time (up to 15 days) before starting to decrease. For Fe, the maximum rate of release was reached beyond 4 days and this rate remained high up to 22 days of growth of banana. The possible mechanisms responsible for this enhanced release of elements from basalt in the presence of plants are discussed. Although these mechanisms need to be elucidated, the present results clearly show that higher plants can considerably affect the kinetics of dissolution of basalt rock. Therefore, they need to be taken into account when assessing the biogeochemical cycles of elements that are major nutrients for plants, such as Ca, Mg, and K, but also micronutrients such as Fe and ‘nonessential’ elements such as Si and Na.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.