Abstract
Plant growth-promoting bacteria (PGPB) and NO-3 availability both affect NO-3 uptake and root architecture. The presence of external NO-3 induces the expression of NO-3 transporter genes and elicits lateral root elongation in the part of the root system exposed to the NO-3 supply. By contrast, an increase in NO-3 supply leads to a higher plant N status (low N demand), which represses both the NO-3 transporters and lateral root development. The effects of PGPB on NO-3 uptake and root development are similar to those of low NO-3 availability (concomitant stimulation of NO-3 uptake rate and lateral root development). The mechanisms responsible for the localized and long-distance regulation of NO-3 uptake and root development by NO-3 availability are beginning to be elucidated. By contrast, the signalling and transduction pathways elicited by the rhizobacteria remain totally unknown. This review will compare the effects of NO-3 availability and PGPB on root morphogenesis and NO-3 uptake, in order to determine whether interactions exist between the NO-3-dependent and the PGPB-dependent regulatory pathways.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.