Abstract

Subambient pCO2 has persisted across the major Phanerozoic ice ages, including the entire late Cenozoic (ca 30Ma to present). Stable isotope analysis of plant-derived organic matter is used to infer changes in pCO2 and climate in the geologic past, but a growth chamber that can precisely control environmental conditions, including pCO2 and δ13 C value of CO2 (δ13 CCO2 ) at subambient pCO2 , is lacking. We designed and built five identical chambers specifically for plant growth under stable subambient pCO2 (ca 100 to 400ppm) and δ13 CCO2 conditions. We tested the pCO2 and δ13 CCO2 stability of the chambers both with and without plants, across two 12-hour daytime experiments and two extended 9-day experiments. We also compared the temperature and relative humidity conditions among the chambers. The average δ13 CCO2 value within the five chambers ranged from -18.76 to -19.10‰; the standard deviation never exceeded 0.14‰ across any experiment. This represents better δ13 CCO2 stability than that achieved by all previous chamber designs, including superambient pCO2 chambers. Every pCO2 measurement (n=1225) was within 5% of mean chamber values. The temperature and relative humidity conditions differed by no more than 0.4°C and 1.6%, respectively, across all chambers within each growth experiment. This growth chamber design extends the range of pCO2 conditions for which plants can be grown for δ13 C analysis of their tissues at subambient levels. This new capability allows for careful isolation of environmental effects on plant 13 C discrimination across the entire range of pCO2 experienced by terrestrial land plants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.