Abstract

In plants, exposure to temperature extremes, heavy metal-contaminated soils, drought, air pollutants, and pathogens results in the generation of reactive oxygen species that alter the intracellular redox environment, which in turn influences signaling pathways and cell fate. As part of their response to these stresses, plants produce glutathione. Glutathione acts as an anti-oxidant by quenching reactive oxygen species, and is involved in the ascorbate–glutathione cycle that eliminates damaging peroxides. Plants also use glutathione for the detoxification of xenobiotics, herbicides, air pollutants (sulfur dioxide and ozone), and toxic heavy metals. Two enzymes catalyze glutathione synthesis: glutamate–cysteine ligase, and glutathione synthetase. Glutathione is a ubiquitous protective compound in plants, but the structural and functional details of the proteins that synthesize it, as well as the potential biochemical mechanisms of their regulation, have only begun to be explored. As discussed here, the core reactions of glutathione synthesis are conserved across various organisms, but plants have diversified both the regulatory mechanisms that control its synthesis and the range of products derived from this pathway. Understanding the molecular basis of glutathione biosynthesis and its regulation will expand our knowledge of this component in the plant stress response network.

Highlights

  • Plants respond to environmental stresses by regulating metabolic pathways that function to counteract resulting cellular damage

  • The core reactions of glutathione synthesis are conserved across various organisms, but plants have diversified both the regulatory mechanisms that control its synthesis and the range of products derived from this pathway

  • The reduced form of glutathione provides a substrate for multiple cellular reactions that yield oxidized glutathione, i.e., two glutathione molecules linked by a disulfide bond

Read more

Summary

Introduction

Plants respond to environmental stresses by regulating metabolic pathways that function to counteract resulting cellular damage. Like most other organisms, produce glutathione through a conserved chemical pathway, investigations of the plant GCL and GS reveal new insights on the biochemical regulatory mechanisms that control synthesis of this critical molecule and the structural basis for diversification of glutathione analogs in plants. Studies showing that addition of cysteine, glutamate, or glycine does not enhance glutathione synthesis support the role of GCL as a metabolic control point in the pathway (Meyer and Fricker, 2002).

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.