Abstract

Solid-phase microextraction (SPME) is an analytical method for microextraction of analytes, in which the analytes bind to the sorbent on the surface of the SPME fiber. Many types of chemical agents are used as sorbent; however, many of these sorbents cause secondary contamination or are not cost-effective. Here, aqueous extract of Ferula gummosa was evaluated as potential source of sorbent for simultaneous microextraction of morphine and codeine. For this purpose, multiwalled carbon nanotubes were carboxylated with H2SO4/HNO3 (3:1) and then functionalized with aqueous extract of F. gummosa. Functionalization was confirmed by Fourier transform infrared and Raman spectroscopy measurements as well as scanning electron microscopy analysis. Porous polypropylene hollow fibers were filled with the functionalized carbon nanotubes (CNTs) and used for analyte extraction in urine sample at 40°C and pH6 for 2min. Reversed-phase high-performance liquid chromatography (RP-HPLC) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis showed that the fiber could preconcentrate 1ng/mL of morphine and 0.75ng/mL codeine in urine sample and was successfully used for 30 times with no significant loss in the extraction efficiency. Limit of detection (LOD) and limit of quantification (LOQ) for morphine were 1 and 3.3ng/mL, respectively. LOD and LOQ for codeine were determined 0.75 and 2.47ng/mL, respectively. Recovery of the fiber was 80% and 93% for morphine and codeine, respectively. SPME fiber using extract of F. gummosa plant was used for the detection of a small amount of morphine in urine sample. Therefore, plants can be considered as abundant and cheap sources of sorbent for various analytical purposes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.