Abstract

Microbial immobilization technology is considered an efficient bioremediation method for chromium (Cr) pollution. However, it is currently unclear which strain is more beneficial for the remediation of Cr-contaminated water and soil. Therefore, corn straw biochar was used as a carrier to prepare materials for fixing the endophytes Serratia sp. Y-13 (BSR1), Serratia nematodiphila (BSR2), Lysinibacillus sp. strain SePC-36 (BLB1), Lysinibacillus mangiferihumi strain WK63 (BLB2) and the commercial bacteria Shewanella oneidensis MR-1 (BSW). The results demonstrated that, compared with BSW, endophyte-loaded biochar (especially BSR1) was more effective at remediating Cr pollution in water and soil. Endophyte-loaded biochar reduced the abundance of soil pathogenic bacteria, enhanced the number of beneficial plant endophytes, reduced the soil Cr(VI) concentration, improved soil fertility, reduced the plant Cr concentration and improved the yield of lettuce. Redundancy analysis (RDA) and structural equation modelling (PLS-PM) suggested that soil microbes are closely related to soil Cr(VI), plant fresh weight and soil organic matter, whereas endophyte-loaded biochar directly influences plant cell motility pathways by altering plant microbes. This study represents a pioneering investigation into the efficacy of endophyte-loaded biochar as a remediation strategy for Cr pollution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.