Abstract

Metabarcoding of lake sediments have been shown to reveal current and past biodiversity, but little is known about the degree to which taxa growing in the vegetation are represented in environmental DNA (eDNA) records. We analysed composition of lake and catchment vegetation and vascular plant eDNA at 11 lakes in northern Norway. Out of 489 records of taxa growing within 2 m from the lake shore, 17–49% (mean 31%) of the identifiable taxa recorded were detected with eDNA. Of the 217 eDNA records of 47 plant taxa in the 11 lakes, 73% and 12% matched taxa recorded in vegetation surveys within 2 m and up to about 50 m away from the lakeshore, respectively, whereas 16% were not recorded in the vegetation surveys of the same lake. The latter include taxa likely overlooked in the vegetation surveys or growing outside the survey area. The percentages detected were 61, 47, 25, and 15 for dominant, common, scattered, and rare taxa, respectively. Similar numbers for aquatic plants were 88, 88, 33 and 62%, respectively. Detection rate and taxonomic resolution varied among plant families and functional groups with good detection of e.g. Ericaceae, Roseaceae, deciduous trees, ferns, club mosses and aquatics. The representation of terrestrial taxa in eDNA depends on both their distance from the sampling site and their abundance and is sufficient for recording vegetation types. For aquatic vegetation, eDNA may be comparable with, or even superior to, in-lake vegetation surveys and may therefore be used as an tool for biomonitoring. For reconstruction of terrestrial vegetation, technical improvements and more intensive sampling is needed to detect a higher proportion of rare taxa although DNA of some taxa may never reach the lake sediments due to taphonomical constrains. Nevertheless, eDNA performs similar to conventional methods of pollen and macrofossil analyses and may therefore be an important tool for reconstruction of past vegetation.

Highlights

  • Environmental DNA, DNA obtained from environmental samples rather than tissue, is a potentially powerful tool in fields such as modern biodiversity assessment, environmental sciences, diet, medicine, archaeology, and paleoecology [1,2,3,4]

  • We found no combination of filtering criteria that only filtered out the false positives without any loss of true positives (S3 Table)

  • Taking into account the limitation of taxonomic resolution due to sequence sharing or taxa missing in the reference library, we were able to detect about one third of the taxa growing in the immediate vicinity of the lake using only two small sediment samples from the lake centre

Read more

Summary

Introduction

Environmental DNA (eDNA), DNA obtained from environmental samples rather than tissue, is a potentially powerful tool in fields such as modern biodiversity assessment, environmental sciences, diet, medicine, archaeology, and paleoecology [1,2,3,4]. The advantages of metabarcoding in estimating species diversity are many. It is cost-effective, it has minimal effect on the environment during sampling, and data production (though not interpretation) is independent of the taxonomic expertise of the investigator [4, 6]. It may even out-perform traditional methods in the detection of individual species [7, 8]. This study assesses representation of modern vegetation by eDNA from lake sediments

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.