Abstract
Abstract Dispersal is a key ecological process that influences plant community assembly. Therefore, understanding whether dispersal strategies are associated with climate is of utmost importance, particularly in areas greatly exposed to climate change. We examined alpine plant communities located in the mountain summits of the tropical Andes across a 4,000‐km latitudinal gradient. We investigated species dispersal strategies and tested their association with climatic conditions and their evolutionary history. We used dispersal‐related traits (dispersal mode and growth form) to characterize dispersal strategies for 486 species recorded on 49 mountain summits. Then we analysed the phylogenetic signal of traits and investigated the association between dispersal traits, phylogeny, climate and space using structural equation modelling and fourth‐corner analysis together with RLQ ordination. A median of 36% species in the communities was anemochorous (wind‐dispersed) and herbaceous. This dispersal strategy was followed by the barochory‐herb combination (herbaceous with unspecialized seeds, dispersed by gravity) with a median of 26.3% species in the communities. The latter strategy was common among species with distributions restricted to alpine environments. While trait states were phylogenetically conserved, they were significantly associated with a temperature gradient. Low minimum air temperatures, found at higher latitudes/elevations, were correlated with the prevalence of barochory and the herb growth form, traits that are common among Caryophyllales, Brassicaceae and Poaceae. Milder temperatures, found at lower latitudes/elevations, were associated with endozoochorous, shrub species mostly from the Ericaceae family. Anemochorous species were found all along the temperature gradient, possibly due to the success of anemochorous Compositae species in alpine regions. We also found that trait state dominance was more associated with the climatic conditions of the summit than with community phylogenetic structure. Although the evolutionary history of the tropical Andean flora has also shaped dispersal strategies, our results suggest that the environment had a more predominant role. Synthesis. We showed that dispersal‐related traits are strongly associated with a gradient of minimum air temperatures in the Andes. Global warming may weaken this key filter at tropical alpine summits, potentially altering community dispersal strategies in this region and thus, plant community structure and composition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.