Abstract

Plant leaves can be used to effectively detect plant diseases. However, the number of images of unhealthy leaves collected from various plants is usually unbalanced. It is difficult to detect diseases using such an unbalanced dataset. We used DoubleGAN (a double generative adversarial network) to generate images of unhealthy plant leaves to balance such datasets. We proposed using DoubleGAN to generate high-resolution images of unhealthy leaves using fewer samples. DoubleGAN is divided into two stages. In stage 1, we used healthy leaves and unhealthy leaves as inputs. First, the healthy leaf images were used as inputs for the WGAN (Wasserstein generative adversarial network) to obtain the pretrained model. Then, unhealthy leaves were used for the pretrained model to generate 64*64 pixel images of unhealthy leaves. In stage 2, a superresolution generative adversarial network (SRGAN) was used to obtain corresponding 256*256 pixel images to expand the unbalanced dataset. Finally, compared with images generated by DCGAN (Deep convolution generative adversarial network). The dataset expanded with DoubleGAN, the generated images are clearer than DCGAN, and the accuracy of plant species and disease recognition reached 99.80 and 99.53 percent, respectively. The recognition results are better than those from the original dataset.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.