Abstract

The influence of risk of herbivory and its variation in time on the optimal defence strategy in plants is analysed by a simple optimization model. We contrast two possible defence strategies; a constitutive defence with an invariant defence level in time and an idealized induced defence, that is, a strategy that adjusts the defence level to the prevailing risk of herbivory. We also take into account effects of the efficiency of the defence. If there is no variation in risk of herbivory over years, constitutive and induced defence should have the same expected optimal defence level and both strategies are equally fit. The optimal defence level increases as the maximum fecundity and the adult to juvenile survival ratio of the plants both increase. If the risk of herbivory varies stochastically, the expected optimal level of the constitutive defence is either increased or unaffected by the variation, whereas the induced defence strategy may result in both higher or lower expected optimal defence levels as variance increases. This outcome is dependent on the mean risk of herbivory. It also depends on the defence efficiency, i.e. the shape (convex, concave or linear) of the defence function that relates the probability of survival if encountered by a herbivore to defence level. Thus, the defence level of plants interacting with variable herbivore populations cannot be unambiguously predicted unless the defence strategy (constitutive or induced), mean risk of herbivory, the form of the defence function and plant life history are known.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call