Abstract
Climatic conditions affect the chemical composition of edible crops, which can impact flavor, nutrition and overall consumer preferences. To understand these effects, we sampled tea (Camellia sinensis (L.) Kuntze) grown in different environmental conditions. Using a target/nontarget data analysis approach, we detected 564 metabolites from tea grown at two elevations in spring and summer over 3 years in two major tea-producing areas of China. Principal component analysis and partial least squares-discriminant analysis show seasonal, elevational, and yearly differences in tea from Yunnan and Fujian provinces. Independent of location, higher concentrations of compounds with aromas characteristic of farmers’ perceptions of high-quality tea were found in spring and high elevation teas. Yunnan teas were distinct from Fujian teas, but the effects of elevation and season were different for the two locations. Elevation was the largest source of metabolite variation in Yunnan yet had no effect in Fujian. In contrast seasonal differences were strong in both locations. Importantly, the year-to-year variation in chemistry at both locations emphasizes the importance of doing multi-year studies, and further highlights the challenge farmers face when trying to produce teas with specific flavor/health (metabolite) profiles.
Highlights
Greenhouse gasses accumulating in the atmosphere cause variability in local climates including prolonged heatwaves, droughts, heavy rains, flooding, cold, and frost, all of which damage crop production (IPCC, 2014; USGCRP, 2017; Fussel et al, 2018)
We found a greater number of metabolites with higher concentrations in the spring and high elevation teas that exhibited sweet, floral, honey-like aromas compared to hay, grassy, earthy notes in the summer and low elevation teas
Tea leaves were collected from four communities located at high and low elevations in two major tea-producing provinces of China during the spring and summer harvest seasons from 2014–2016
Summary
Greenhouse gasses accumulating in the atmosphere cause variability in local climates including prolonged heatwaves, droughts, heavy rains, flooding, cold, and frost, all of which damage crop production (IPCC, 2014; USGCRP, 2017; Fussel et al, 2018). The effect of extreme weather and climate variability on yield has been extensively studied for many crops (Kang et al, 2009; Lobell and Gourdji, 2012; Kurukulasuriya and Rosenthal, 2013). Important to climate effects on yields is understanding how plant–climate interactions affect crop quality, including the secondary metabolites that contribute to the sensory and nutritional properties of plant materials. Changes in crop quality have been shown to influence consumer preference, acceptance, and, demand (Ahmed and Stepp, 2016). As attribution science (the science of attributing specific adverse weather conditions to climate change) advances (Otto, 2016; Imada et al, 2018; Knutson et al, 2018), understanding how plant–climate interactions influences human and natural systems is critical in developing long-term, sustainable agro-ecosystems
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.