Abstract
An important challenge in the study of ecosystem function is resolving how plant antiherbivore chemical defence expression may influence plant-associated microbes, and nutrient release. We report on a factorial experiment that explores a mechanism underlying this interplay using individuals of the perennial plant Tansy that vary genotypically in the chemical content of their antiherbivore defenses (chemotypes). We assessed to what extent soil and its associated microbial community versus chemotype-specific litter determined the composition of the soil microbial community. Microbial diversity profiles revealed sporadic effects of chemotype litter and soil combinations. Soil source and litter type both explained the microbial communities decomposing the litter with soil source having a more important effect. Some microbial taxa are related to particular chemotypes, and thus intra-specific chemical variation of a single plant chemotype can shape the litter microbial community. But we found that ultimately the effect of fresh litter inputs from a chemotype appeared to act secondary as a filter on the composition of the microbial community, with the primary factor being the existing microbial community in the soil.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.