Abstract

The structure of the primary cell wall in non-graminaceous plants is briefly reviewed and its role in providing mechanical strength to the plant and protecting it from microbial infection are described. A variety of signalling mechanisms involve oligosaccharides released by glycanase enzymes from microbial pathogens, and some of the mechanisms may be implicated in the regulation of metabolism in ripening fruits. There is some evidence that cell walls are able to sense damage or loss of integrity and that signals can accordingly be passed back to the cytoplasm. Primary cell walls must combine the mechanical and other functions with the capacity to grow in a controlled way. A modification of the ‘Molecular Velcro’ model developed originally to describe deformation of wood is used to predict load-deformation curves like those described by the Lockhart equation for the relationship between turgor stress and growth. Predicting a stress threshold for growth does not require the assumption of enzyme activity, although in fact enzyme activity is indeed required to permit growth at the rates normally observed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.