Abstract

The lignin deficient double mutant of cinnamyl alcohol dehydrogenase (CAD, cad-4, cad-5 or cad-c, cad-d) in Arabidopsis thaliana [Sibout, R., Eudes, A., Mouille, G., Pollet, B., Lapierre, C., Jouanin, L., Séguin, A., 2005. Cinnamyl alcohol dehydrogenase-C and - D are the primary genes involved in lignin biosynthesis in the floral stem of Arabidopsis. Plant Cell 17, 2059–2076], was comprehensively examined for effects on disruption of native lignin macromolecular configuration; the two genes encode the catalytically most active CAD’s for monolignol/lignin formation [Kim, S.-J., Kim, M.-R., Bedgar, D.L., Moinuddin, S.G.A., Cardenas, C.L., Davin, L.B., Kang, C., Lewis, N.G., 2004. Functional reclassification of the putative cinnamyl alcohol dehydrogenase multigene family in Arabidopsis. Proc. Natl. Acad. Sci., USA 101, 1455–1460]. The inflorescence stems of the double mutant presented a prostrate phenotype with dynamic modulus properties greatly reduced relative to that of the wild type (WT) line due to severe reductions in macromolecular lignin content. Interestingly, initially the overall pattern of phenolic deposition in the mutant was apparently very similar to WT, indicative of comparable assembly processes attempting to be duplicated. However, shortly into the stage involving (monomer cleavable) 8- O-4′ linkage formation, deposition was aborted. At this final stage, the double mutant had retained a very limited ability to biosynthesize monolignols as evidenced by cleavage and release of ca. 4% of the monolignol-derived moieties relative to the lignin of the WT line. In addition, while small amounts of cleavable p-hydroxycinnamaldehyde-derived moieties were released, the overall frequency of (monomer cleavable) 8- O-4′ inter-unit linkages closely approximated that of WT for the equivalent level of lignin deposition, in spite of the differences in monomer composition. Additionally, 8–5′ linked inter-unit structures were clearly evident, albeit as fully aromatized phenylcoumaran-like substructures. The data are interpreted as a small amount of p-hydroxycinnamaldehydes being utilized in highly restricted attempts to preserve native lignin configuration, i.e. through very limited monomer degeneracy during template polymerization which would otherwise afford lignins proper in the cell wall from their precursor monolignols. The defects introduced (e.g. in the vascular integrity) provide important insight as to why p-hydroxycinnamaldehydes never evolved as lignin precursors in the 350,000 or so extant vascular plant species. It is yet unknown at present, however, as to what levels of lignin reduction can be attained in order to maintain the requisite properties for successful agronomic/forestry cultivation. Nor is it known to what extent, if any, such deleterious modulations potentially compromise plant defenses. Finally, prior to investigating lignin primary structure proper, it is essential to initially define the fundamental characteristics of the biopolymer(s) being formed, such as inter-unit frequency and lignin content, in order to design approaches to determine overall sequences of linkages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.