Abstract
This review describes how transient protein-protein interactions can contribute to direct information flow between subsequent steps of metabolic and signaling pathways, focusing on the redox perspective. Posttranslational modifications are often the basis for the dynamic nature of such macromolecular aggregates, named microcompartments. The high cellular protein concentration promotes these interactions that are prone to disappear upon the extraction of proteins from cells. Changes of signaling molecules, such as metabolites, effectors or phytohormones, or the redox state in the cellular microenvironment, can modulate them. The signaling network can, therefore, respond in a very flexible and appropriate manner, such that metabolism, stress responses, and developmental steps are integrated by multiple and changing contacts between functional modules. This allows plants to survive and persist by continuously and flexibly adapting to a challenging or even adverse environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.