Abstract

In contrast to yeast or mammalian counterpart, BiP (Binding Protein) from several plant species, such as maize, tobacco, Arabidopsis and soybean, is encoded by a multigene family. A systematic characterization and analysis of soybean BiP expression have provided evidence for the existence of multiple, complex regulatory mechanisms controlling plant BiP gene expression. In support of this observation, the soybean BiP gene family has been shown to exhibit organ-specific expression and differential regulation in response to abiotic stresses through distinct signaling pathways. As a member of the stress-regulated HSP70 family of protein, the elucidation of plant BiP function and regulation is likely to lead do new strategies to enhance crop tolerance to environmental stress. Consistent with this observation, transgenic plants overexpressing soybean BiP have demonstrated to exhibit increased tolerance to ER (endoplasmic reticulum) stressors during seed germination and enhanced tolerance to water deficit during plant growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.