Abstract

The evolution of the plant immune response has resulted in a highly effective defense system that is able to resist potential attack by microbial pathogens. The primary immune response is referred to as pathogen associated molecular pattern (PAMP) triggered immunity and has evolved to recognize common features of microbial pathogens. In response to the delivery of pathogen effector proteins, plants acquired R proteins to fight against pathogen attack. R-dependent defense response is important in understanding the biochemical and cellular mechanisms and underlying these interactions will enable molecular and transgenic approaches for crops with increased biotic resistance. Proteomic analyses are particularly useful for understanding the mechanisms of host plant against the pathogen attack. Recent advances in the field of proteome analyses have initiated a new research area, i.e., the analysis of more complex microbial communities and their interaction with plant. Such areas hold great potential to elucidate, not only the interactions between bacteria and their host plants, but also of bacteria-bacteria interactions between different bacterial taxa, symbiotic, pathogenic bacteria, and commensal bacteria. During biotic stress, plant hormonal signaling pathways prioritizes defense over other cellular functions. Some plant pathogens take advantage of hormone dependent regulatory system by mimicking hormones that interfere with host immune responses to promote virulence (vir). In this review, it is discussed the cross talk that plays important role in response to pathogens attack with different infection strategies using proteomic approaches.

Highlights

  • Unlike plant and animal cells, most bacteria are exposed to a constantly changing physical and chemical environment

  • pathogen associated molecular pattern (PAMP) recognition results in plant systemic acquired resistance and production of resistance (R) proteins leading to effector triggered immunity (ETI), which is often accompanied by the hypersensitive response (HR), and programmed cell death (Jones and Dangl, 2006)

  • These results suggest that root exudates provide additional carbon sources to the bacteria and that physiological adaptation are required for efficient bacterial growth in the presence of plants

Read more

Summary

INTRODUCTION

Unlike plant and animal cells, most bacteria are exposed to a constantly changing physical and chemical environment. Phylogenetic diversity of plant-associated bacteria (PAB) can categorize them in to commensals (acquire nutrients from the plant without damaging), mutualists (positively influence plant health), and pathogens (damage plant) (Newton et al, 2010). Commensals, or mutualists bacteria have developed strategies to interact with plants overlap, exceptionally modified physiology that accounts for individual need (Martin et al, 2003; Boller and Felix, 2009). Plant immunity that recognize pathogens by membrane proteins is termed as pattern recognition receptors (PRRs), which recognize pathogen associated molecular pattern (PAMP) and is basis of plant innate immunity (Gomez-Gomez and Boller, 2000). PAMP recognition results in plant systemic acquired resistance and production of resistance (R) proteins leading to effector triggered immunity (ETI), which is often accompanied by the hypersensitive response (HR), and programmed cell death (Jones and Dangl, 2006). Based on predicted protein sequences, these R gene products are divided into intracellular protein kinases (Pto), proteins with an extracellular leucine-rich repeat (LRR) domain and a cytoplasmic protein kinase region (e.g., Xa21), intracellular proteins containing a region of a LRRs and a nucleotide binding site

Proteomics analysis of plant associated bacteria
Chrysanthemum leaves extract
Streptomyces coelicolor
Brazilian sweet orange
Pantoea stewartii
Proteomic approach
Protein sequencer
CONCLUSIONS
Isolation of a novel tomato Caffeoyl
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.