Abstract
AbstractStruvite (MgNH4PO4.6H2O) and nitrification inhibitors are applied to soils to, respectively, provide nutrients and reduce nitrogen (N) loss. Given its low N composition (5.7%) relative to that of phosphorus (P, 12.6%) and magnesium (Mg, 9.9%), struvite could be added to soil concurrently with N fertilizers as a source of P and Mg. Nutrient release from struvite could be impacted if nitrification of its ammonium component is reduced by a nitrification inhibitor. Accordingly, a pot trial gauged whether struvite‐fertilized ryegrass had comparable Mg or P uptake and shoot yields with treatments receiving conventional Mg and P fertilizers. Struvite precipitated from milk industry wastewater, or conventional fertilizers, were added to a soil–sand mixture of low fertility. The inhibitor dicyandiamide (DCD) was added to assess its effect on P uptake by ryegrass. Relative to Epsom salt, struvite led to increased Mg uptake without significantly affecting shoot biomass, indicating luxury consumption. Regarding shoot yield and P uptake, struvite was as effective as triple super phosphate. DCD significantly reduced P uptake in the first harvest; the inhibited nitrification of the ammonium is surmised to have diminished struvite dissolution. In later harvests, DCD led to a trend (albeit not statistically significant) of increased biomass; this N‐rich (66% N) compound was probably biodegraded and utilized as an N source. The impact of DCD on P uptake in this experiment was short‐lived. Nevertheless, DCD degradation occurs less rapidly in field conditions, potentially affecting early P supply which is vital for optimum yield.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.