Abstract

The rhizospheres and phyllospheres of peas, beans, tomatoes, and squash raised in a desert sand soil mixed with 0.5% crude oil were rich in oil-utilizing bacteria and accommodated large numbers of free-living diazotrophic bacteria, with potential for hydrocarbon utilization. According to their 16S rRNA-sequences, the cultivable oil-utilizing bacteria were affiliated with the following genera, arranged in decreasing frequency: Bacillus, Ochrobactrum, Enterobacter, Rhodococcus, Arthrobacter, Pontola, Nocardia, and Pseudoxanthomonas. Diazotrophic isolates were affiliated with Rhizobium, Bacillus, Rhodococcus, Leifsonia, Cellulosimicrobium, Stenotrophomonas, Kocuria, Arthrobacter, and Brevibacillus. The crude oil–utilizing and diazotrophic isolates grew, with varying growth intensities, on individual aliphatic (C8 to C40) and aromatic hydrocarbons, as sole sources of carbon and energy. Quantitative gas liquid chromatographic measurements showed that representative bacterial isolates eliminated pure n-hexadecane, n-decosane, phenanthrene, and crude oil from the surrounding liquid media. Cultivation of oily sand–soil samples with any of the four tested crops led to enhanced oil degradation in that soil, as compared with the degradation in uncultivated oily sand–soil samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call