Abstract

The environmental fate and potential impacts of nanopesticides on agroecosystems under realistic agricultural conditions are poorly understood. As a result, the benefits and risks of these novel formulations compared to the conventional products are currently unclear. Here, we examined the effects of repeated realistic exposures of the Cu(OH)2 nanopesticide, Kocide 3000, on simulated agricultural pastureland in an outdoor mesocosm experiment over 1 year. The Kocide applications were performed alongside three different mineral fertilization levels (Ambient, Low, and High) to assess the environmental impacts of this nanopesticide under low-input or conventional farming scenarios. The effects of Kocide over time were monitored on forage biomass, plant mineral nutrient content, plant-associated non-target microorganisms (i.e., N-fixing bacteria or mycorrhizal fungi) and six soil microbial enzyme activities. We observed that three sequential Kocide applications had no negative effects on forage biomass, root mycorrhizal colonization or soil nitrogen fixation rates. In the Low and High fertilization treatments, we observed a significant increase in aboveground plant biomass after the second Kocide exposure (+14% and +27%, respectively). Soil microbial enzyme activities were significantly reduced in the short-term after the first exposure (day 15) in the Ambient (-28% to -82%) and Low fertilization (-25% to -47%) but not in the High fertilization treatment. However, 2 months later, enzyme activities were similar across treatments and were either unresponsive or responded positively to subsequent Kocide additions. There appeared to be some long-term effects of Kocide exposure, as 6 months after the last Kocide exposure (day 365), both beta-glucosidase (-57% in Ambient and -40% in High fertilization) and phosphatase activities (-47% in Ambient fertilization) were significantly reduced in the mesocosms exposed to the nanopesticide. These results suggest that when used in conventional farming with high fertilization rates, Kocide applications did not lead to marked adverse effects on forage biomass production and key plant–microorganism interactions over a growing season. However, in the context of low-input organic farming for which this nanopesticide is approved, Kocide applications may have some unintended detrimental effects on microbially mediated soil processes involved in carbon and phosphorus cycling.

Highlights

  • Novel applications of nanotechnology for plant protection and nutrition is leading to the development of so-called “nanopesticides” and “nanofertilizers.” The emergence of these nano-enabled agrochemicals may be a promising avenue for reducing agricultural impacts on the environment and on human health (Kah, 2015; Liu and Lal, 2015)

  • There was no overall effect, post hoc tests indicated that Kocide application increased the aboveground plant biomass after the second exposure in both the Low (14%, p = 0.04, Figure 2A) and High fertilization treatments (27%, p = 0.04, Figure 2)

  • In our mesocosm experiment, repeated exposures to the nanopesticide Kocide 3000 had no negative effects on plant biomass and plant–microorganism associations but soil microbial enzyme activities were periodically inhibited or stimulated by this treatment

Read more

Summary

Introduction

Novel applications of nanotechnology for plant protection and nutrition is leading to the development of so-called “nanopesticides” and “nanofertilizers.” The emergence of these nano-enabled agrochemicals may be a promising avenue for reducing agricultural impacts on the environment and on human health (Kah, 2015; Liu and Lal, 2015). The limited knowledge on the environmental fate and potential impacts of these nano-agrochemicals currently hampers our ability to assess the true benefits and risks of these new formulations compared to conventional pesticides and fertilizers (Benelli et al, 2017; Kah et al, 2018). Previous ecotoxicological studies raised concerns about the impact of nanomaterials on plant health and soil organisms (reviewed by McKee and Filser, 2016; Tripathi et al, 2017) and even food quality and soil fertility (Priester et al, 2012; Chen et al, 2015; Judy et al, 2015). As the production and release of these novel nano-formulations in agro-ecosystems may increase in the future, developing realistic long-term environmental assessments of nano-agrochemical impacts is imperative

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call