Abstract

Benzidine and 4-aminobiphenyl (4-ABP) are promutagenic bicyclic aromatic amines that are activated into frameshift and base pair substitution mutagens by plant systems. Using the plant cell/microbe coincubation assay, plant-activated benzidine from 0 to 50 microM induced a concentration-response in Salmonella typhimurium. At concentrations above 5 microM, plant-activated benzidine induced frameshift and base pair substitution mutations in the N- or O-acetyltransferase over-expressing strains, DJ460, YG1024, and YG1029. With plant-activated 4-ABP, concentrations above 250 microM induced a significant mutagenic response in strains YG1024 and YG1029. A tobacco cell-free mixture, TX1MX, activated benzidine and 4-ABP into mutagenic metabolites in S. typhimurium strains YG1024, YG1029, and DJ460. The mutagenic sensitivities of plant-activated benzidine and 4-ABP were the same with two different types of plant activation systems, TX1 suspension cells and TX1MX cell-free medium. The plant activation of these aromatic amines is mediated by tobacco cell peroxidase. Plant-activated benzidine and 4-ABP are converted into intermediates that serve as substrates for bacterial or humanacetylCoA: N-hydroxyarylamine N-acetyltransferase to generate the ultimate mutagenic products.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call