Abstract

We have isolated from the plant Onobrychis ebenoides three novel arylobenzofurans with binding affinity for the estrogen receptor. In this study, we evaluated these arylobenzofurans, namely ebenfuran I, ebenfuran II and ebenfuran III for their potential selective estrogen receptor modulator (SERM)-like properties. We examined their ability, (1) to induce the insulin growth factor binding protein-3 (IGFBP-3) in MCF-7 breast cancer cells, (2) to stimulate differentiation and mineralization of osteoblastic cell culture by histochemical staining for alkaline phosphatase, Alizarin Red-S staining and calcium levels in the supernatants and (3) to inhibit cell proliferation of cervical adenocarcinoma (Hela) cells by use of the MTT assay. An estrogen receptor mediated effect was investigated by carrying out chloramphenicol acetyl transferase (CAT) assay on transient MCF-7 transfectants. Estradiol and the “pure” antiestrogen ICI 182780 were included to serve as control samples of the estrogenic and antiestrogenic effect respectively. Our data reveal that ebenfuran II is a highly potent SERM, exhibiting antiestrogenic activity in breast cancer cells via the estrogen receptor, estrogenic effect on osteoblasts and no stimulatory effect on cervix adenocarcinoma cells. In conclusion, our study is the first to demonstrate that plant derived arylobenzofurans show a SERM profile and may be considered for the prevention and treatment of diseases such as breast cancer, cervical cancer and osteoporosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.