Abstract

We investigated the magnitude and drivers of spatial variability in soil and plant δ15 N across the landscape in a topographically complex semiarid ecosystem. We hypothesized that large spatial heterogeneity in water availability, soil fertility and vegetation cover would be positively linked to high local-scale variability in δ15 N. We measured foliar δ15 N in three dominant plant species representing contrasting plant functional types (tree, shrub, grass) and mycorrhizal association types (ectomycorrhizal or arbuscular mycorrhizal). This allowed us to investigate whether δ15 N responds to landscape-scale environmental heterogeneity in a consistent way across species. Leaf δ15 N varied greatly within species across the landscape and was strongly spatially correlated among co-occurring individuals of the three species. Plant δ15 N correlated tightly with soil δ15 N and key measures of soil fertility, water availability and vegetation productivity, including soil nitrogen (N), organic carbon (C), plant-available phosphorus (P), water-holding capacity, topographic moisture indices and normalized difference vegetation index. Multiple regression models accounted for 62-83% of within-species variation in δ15 N across the landscape. The tight spatial coupling and interdependence of the water, N and C cycles in drylands may allow the use of leaf δ15 N as an integrative measure of variations in moisture availability, biogeochemical activity, soil fertility and vegetation productivity (or 'site quality') across the landscape.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call