Abstract

PurposeThe goal of this work is to evaluate planning target volume (PTV)-to-skin proximity versus plan quality as well as the effects of calculation voxel size on dose uncertainty in the surface region. Methods and MaterialsA right-sided clinical target volume with the lateral border 5 mm from the surface was delineated on the computed tomographic data of a head-and-neck phantom. A 5-mm PTV expansion was generated except laterally where distances of 0-5 mm were used. A 7-field intensity modulated radiation therapy plan was generated using the Eclipse treatment planning system. Optimization was performed where 95% of the PTV receives the prescription dose using a voxel size of 2 mm3. Dose calculations were repeated for voxel sizes of 1, 3, and 5 mm3. For each plan, 9 point dose values were obtained just inside the phantom surface, corresponding to a 2 cm × 2 cm grid near the central target region. Nine ultrathin thermoluminescent dosimeters were placed on the phantom surface corresponding to the grid. Measured and calculated dose values were compared. Conformality, homogeneity, and target coverage were compared as well. This process was repeated for volumetric modulated arc therapy (VMAT) calculated with a 2-mm3 voxel size. ResultsSurface dose is overestimated by the treatment planning system (TPS) by approximately 21% and 9.5% for 5- and 3-mm3 voxels, respectively, and is accurately predicted for 2-mm3 voxels. A voxel size of 1 mm3 results in underestimation by 11%. Conformality improves with increasing PTV-to-skin distance and a conformality index of unity is obtained for grid sizes between 1 and 3 mm3 and PTV-to-skin distances of 4-4.5 mm. Hot spot also improves and falls below 110% at 4-mm PTV-to-skin distance. Underdosage worsens as the PTV approaches the skin. All of the above appear to hold for volumetric modulated arc therapy. ConclusionsFor decreasing PTV-to-skin distance with this TPS, isodose conformality decreases, “hot spot” increases, and target coverage degrades. Surface dose is overestimated when voxel sizes greater than 2 mm3 are chosen, and underestimated for smaller voxels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.