Abstract
Consider the problem faced by a purchaser of solid waste management services, who needs to identify waste collection points, the assignment of waste generation points to waste collection points, and the type and number of receptacles utilized at each collection point. Receptacles whose collection schedule is specified in advance are charged a fixed fee according to the number of times the receptacle is serviced (emptied) per week. For other receptacles, the purchaser pays a fee comprised of a fixed service charge, plus a variable cost that is assessed on a per-ton-removed basis. We develop a mathematical programming model to minimize the costs that the purchaser pays to the waste management provider, subject to a level of service that is sufficient to collect all of the purchaser’s required waste. Examining historical data from the University of Missouri, we observed significant variability in the amount of waste serviced for nonscheduled receptacles. Because this variability has a significant impact on cost, we modified our model using robust optimization techniques to address the observed uncertainty. Our model’s highly robust solution, while slightly more expensive than the nonrobust solution in the most-optimistic scenario, significantly outperforms the nonrobust solution for all other potential scenarios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.