Abstract

Pumped storage can provide some of the flexibility that power system operators need to balance load and generation in an uncertain environment, and thus enhance a power system's ability to incorporate wind power. Since the process of balancing wind power involves various combinations of wind generation and loads, the amount of pumped storage capacity needed should be evaluated using a substantial number of scenarios. This paper describes a chronological production simulation platform and its application in planning pumped storage capacity for the Jiangsu (China) provincial power system. The daily dispatching of various types of units is simulated using a unit commitment module. A simulation of wind farm operation is incorporated in this module to take into account the effect of its variability on daily dispatching. A detailed cost model for thermal generating units provides an accurate estimate of the benefits of pumped storage. Simulation results clearly show how much generation cost and wind power curtailment should be expected for different amounts of pumped storage capacity. A comparison between the operating and investment costs is then used to determine the optimal pumped storage capacity. Finally, various sensitivity analyses are performed to assess the effect of key parameters on this optimal capacity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call