Abstract

The concern with renewable energy has been growing. Large-scale installation of photovoltaic (PV) generation and electricity storage is expected to be installed into the power system in Japan. In this situation, we need to keep supply-demand balance by systematically using not only traditional power generation systems but also the PV generation and storage equipment. Towards this balancing, a number of prediction methods for PV generation and demand have been developed in literature. However, prediction-based balancing is not necessarily easy. This is because the prediction of PV generation and the demand forecasting inevitably includes some uncertainty. Against this background, we formulate a problem to plan battery charge pattern while minimizing the fuel cost of generators with explicit consideration of prediction uncertainty. In this problem, given as interval quadratic programming, the prediction uncertainty is described as a parameter in constraint condition. Furthermore, we propose a method to find a solution to this problem from the viewpoint of monotonicity analysis. Finally, by numerical analysis based on this problem and its solution method, we discuss the relation between the minimal regulating capacity and the required battery charge/discharge pattern to tolerate a given amount of prediction uncertainty.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.