Abstract

In this paper, theoretical foundations of planning processes are outlined in a form applicable for design and control of autonomous mobile robots. Planning/control is shown to be a unified recursive operation of decision making applied to a nested hierarchy of knowledge representation. The core of the theory is based upon methods developed in the areas of Post-production systems, theory of coding, and the team theory of decentralized stochastic control. A class of autonomous control systems for robots is defined, and a problem of information representation is addressed for this class. A phenomenon of nesting is analyzed and the minimum c-entropy rule is determined for arranging efficient design and control procedures for systems of intelligent control. A concept of nested hierarchical knowledge-based controller is employed in this paper which enables minimum-time control using nested dynamic programming. An application of this concept is unfolded for a system of knowledge-based control of an autonomous mobile robot. Key words: Autonomous Control Systems, Decision Making, Production Systems, Decentralized Stochastic Control, Dynamic Programming, Hierarchical Control, Knowledge Based Controllers, E-entropy, Planning, Navigation, Guidance, Prediction, Contingencies, Mobile Robots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.