Abstract

NASA's Mars Science Laboratory (MSL) rover mission is planning to make use of advanced software technologies in order to support fulfillment of its ambitious science objectives. The mission plans to adopt the mission data system (MDS) as the mission software architecture, and plans to make significant use of on-board autonomous capabilities (e.g., path planning, obstacle avoidance) for the rover software. The use of advanced software technologies embedded in advance mission software architecture represents a turning point in software for space missions. While prior flight experiments (notably the deep space one remote agent experiment) have successfully demonstrated aspects of autonomy enabled by advanced software technologies, and MDS has been tested in ground experiments (e.g., on-earth tests on rover hardware), MSL is the first science mission to rely on this combination. The success of the MSL mission is predicated upon our ability to adequately verify and validate the advanced software technologies, the MDS architectural elements, and the integrated system as a whole. Because MSL is proposing a shift from traditional approaches to flight software, approaches to verification and validation (V&V) require scrutiny to determine whether traditional methods are adequate, and where they need adjustment and/or augmentation to handle the new challenges. This work presents a study of the V&V needs and opportunities associated with MSL's novel approach to mission software, and provides an assessment of V&V techniques, both current and emerging, vis-a-vis their adequacy and suitability for V&V of the MSL rover software.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call