Abstract
Planning in Markov decision processes (MDPs) typically optimises the expected cost. However, optimising the expectation does not consider the risk that for any given run of the MDP, the total cost received may be unacceptably high. An alternative approach is to find a policy which optimises a riskaverse objective such as conditional value at risk (CVaR). However, optimising the CVaR alone may result in poor performance in expectation. In this work, we begin by showing that there can be multiple policies which obtain the optimal CVaR. This motivates us to propose a lexicographic approach which minimises the expected cost subject to the constraint that the CVaR of the total cost is optimal. We present an algorithm for this problem and evaluate our approach on four domains. Our results demonstrate that our lexicographic approach improves the expected cost compared to the state of the art algorithm, while achieving the optimal CVaR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the International Conference on Automated Planning and Scheduling
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.