Abstract

Continuous-state partially observable Markov decision processes (POMDPs) are an intuitive choice of representation for many stochastic planning problems with a hidden state. We consider a continuous-state POMDPs with finite action and observation spaces, where the POMDP is parametrised by weighted sums of Gaussians, or Gaussian mixture models (GMMs). In particular, we study the problem of optimising the selection of measurement channel in such a framework. A new error bound for a point-based value iteration algorithm is derived, and a method for constructing a subset of belief states that attempts to reduce the error bound is implemented. In the experiments, applying continuous-state POMDPs for optimal selection of the measurement channel is demonstrated, and the performance of three GMM simplification methods is compared. Convergence of a point-based value iteration algorithm is investigated by considering various metrics for the obtained control policies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.