Abstract

In the smart grid (SG), the active management (AM) mode will be applied for the connection and operation of distributed generation (DG), which means real time control and management of DG units and distribution network devices based on real time measurements of primary system parameters. In this paper, a novel bi-level programming model for distributed wind generation (DWG) planning under AM mode is put forward. The model takes the maximum expectation of net benefit of DWG as the upper level program objective, and takes the minimum expectation of generation curtailment as the lower level program objective. The impact of active management algorithm on improvement of branch power flow and node voltage is taken into account. A hybrid algorithm combining the plant growth simulation algorithm (PGSA) with probabilistic optimal power flow (POPF) algorithm is presented to solve the optimal planning of DWG under AM mode. The case studies have been carried out on a 33-node distribution network, and the results verify the rationality of the planning model and the effectiveness of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call