Abstract

Summary The Ursa-Princess Waterflood (UPWF) targets the Lower Yellow sand, the main reservoir in the Mars-Ursa basin in Mississippi Canyon, approximately 60 miles south of the mouth of the Mississippi River in the Gulf of Mexico (GOM). The Lower Yellow sand, a world-class Upper Miocene turbidite reservoir, has been on production in the Ursa and Princess fields since 1999, and has been drawn down nearly to the bubblepoint. The waterflood is intended to increase and stabilize reservoir pressure, and to improve sweep efficiency. To accomplish this, four subsea injectors were designed and constructed to inject treated seawater at 40,000 B/D each for a target life of 30 years. Because the Lower Yellow reservoir was already highly depleted, unique risks were identified in the planned subsea completion operations, to be conducted from a mobile offshore drilling unit (MODU). Seawater, used as a completion fluid, was expected to be up to 4,000 psi overbalanced to the reservoir, depending on the well location. This created the risk of either an uncontrollable fluid-level drop in the marine riser or an extreme impairment to the sandface completion. In order to maintain well control with a fluid level at the surface and still deliver low-skin completions, multiple design and procedural issues needed to be addressed, including the following: Control systems on the rig and riser system to prevent uncontrollable fluid-level drop. Perforating systems to minimize impairment in a highly overbalanced environment without adding undue risk to well control. Pill designs that could both control fluid loss at the sandface and clean up effectively. Downhole completion systems capable of functioning either under very high pressure differentials or against very high loss rates. Development of high-burst screens suited to the use of fluid-loss-control pills as a contingency provision in the event that mechanical fluid-loss devices failed. As more deepwater reservoirs approach depletion, specialized tools and procedures will be required to continue to deliver safe and effective sandface completions from floating rigs. This paper details many of these considerations and summarizes the execution experience and results for one such reservoir.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.