Abstract

The aim of this study was to dosimetrically compare three total body irradiation (TBI) techniques which can be delivered by a standard linear accelerator, and to deduce which one is preferable. Specifically, Extended Source to Surface Distance (SSD) Field-in-Field (FiF), Extended SSD Volumetric Modulated Arc Therapy (VMAT), and Standard SSD VMAT TBI techniques were dosimetrically evaluated. Percent depth dose and dose profile measurements were made under treatment conditions for each specified technique. After having generated treatment plans with a treatment planning system (TPS), dose homogeneity and critical organ doses were investigated on a Rando phantom using radiochromic films and optically stimulated luminescence dosimeters (OSLDs). TBI dose of 12Gy in six fractions was prescribed for each technique. The gamma index (5%/5mm) was used for the analysis of radiochromic films. Passing rates for Extended SSD FiF, Extended SSD VMAT and Standard SSD VMAT techniques were found to be 90%, 87% and 94%, respectively. OSLD measurements were within ± 5% agreement with TPS calculations for the first two techniques whereas the agreement was found to be within ± 3% for the Standard SSD VMAT technique. TPS calculations demonstrated that mean lung doses in the first two techniques were around 8.5Gy while it was kept around 7Gy in Standard SSD VMAT. It is concluded that Standard SSD VMAT is superior in sparing the lung tissue while all three TBI techniques are feasible in clinical practice with acceptable dose homogeneity. In the absence of VMAT-based treatment planning, Extended SSD FiF would be a reasonable choice compared to other conventional techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.