Abstract

Usefulness of time-scale transformation and iterative learning control for nonlinear complex dyanamics is presented in this paper. In the proposed method in this paper, ideal feedforward input patterns obtained through iterative learning control can be transformed to another ideal feedforward input patterns by using time-scale changing. This method is useful when a robot has contact with mechanical environment which has nonlinear impedance or complicated dynamics. Moreover, it is claimed that the proposed method is applied to optimal control without parameter estimation Finally, we propose a motion planning method based on time-scale transformation and iterative learning control to realize desired force patterns between a robot and mechanical enviroment with nonlinear impedance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.