Abstract
This paper proposes a crisp two-objective logarithmic programming model to help companies decide their advertising campaigns on TV networks for mature products. Both objectives are: (a) to achieve the highest audience impact and (b) to reduce advertising costs as much as possible. Information input is fuzzily elaborated from statistical data, the fuzzy variables being defuzzified to introduce them into the crisp model. This fuzzy information is elicited by TV experts (often independent consultants). Although these experts know statistical information on audience in the past, they do not fully trust its predictive ability. The approach leads to the strategic advertisement (ad) placement among different broadcasts. Users (often managers of big companies) should inform the analyst about their advertising campaign budget. From Weber and Fechner-based psychological research, the ad impact during the advertising campaign is measured depending on the logarithm of ad repetitions. The crisp two-objective problem is solved by a tradeoff method subject to TV technical constraints. A case study with real world data is developed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.