Abstract

Smoke from both prescribed fires and wildfires can, under certain meteorological conditions, become entrapped within shallow layers of air near the ground at night and get carried to unexpected destinations as a combination of weather systems push air through interlocking ridge–valley terrain typical of the Piedmont of the Southern United States. Entrapped smoke confined within valleys is often slow to disperse. When moist conditions are present, hygroscopic particles within smoke may initiate or augment fog formation. With or without fog, smoke transported across roadways can create visibility hazards. Planned Burn (PB)-Piedmont is a fine scale, time-dependent, smoke tracking model designed to run on a PC computer as an easy-to-use aid for land managers. PB-Piedmont gives high-resolution in space and time predictions of smoke movement within shallow layers at the ground over terrain typical of that of the Piedmont. PB-Piedmont applies only for weather conditions when smoke entrapment is most likely to occur––at night during clear skies and light winds. This paper presents the model description and gives examples of model performance in comparison with observations of entrapped smoke collected during two nights of a field project. The results show that PB-Piedmont is capable of describing the movement of whole smoke plumes within the constraints for which the model was designed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.