Abstract

Benthic organisms may be exposed to polycyclic aromatic hydrocarbons (PAHs) in marine sediments as the result of oil spills. PAH photoinduced toxicity, which has been documented in a wide range of early life stage (ELS) aquatic biota, is a phenomenon by which ultraviolet (UV) radiation potentiates the toxicity of photodynamic PAHs (often leading to mortality). Fiddler crabs (Uca longisignalis) are important ecosystem engineers that influence biogeochemical cycles via burrowing. As gravid females burrow, their eggs may bioaccumulate PAHs from contaminated sediments, leading to in ovo exposure. Consequently, free-swimming larvae exposed to intense UV may be at risk for photoinduced toxicity. In the present study, mature fiddler crabs were bred on oiled sediments contaminated via simulated tidal flux. Gravid females were transferred to clean water after 10 days, and larvae were collected at hatch. While in ovo exposures to oil alone did not affect survival, offspring that were subsequently exposed to full spectrum sunlight in clean water experienced significant mortality that corresponded with in ovo exposures to sediments containing ≥1455 μg/kg tPAH50. Results presented here provide evidence for the potential of photoinduced toxicity to occur in benthic organisms with free-swimming early life stages.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call