Abstract

BackgroundPlankton are foundational to marine food webs and an important feature for characterizing ocean health. Recent developments in quantitative imaging devices provide in-flow high-throughput sampling from bulk volumes—opening new ecological challenges exploring microbial eukaryotic variation and diversity, alongside technical hurdles to automate classification from large datasets. However, a limited number of deployable imaging instruments have been coupled with the most prominent classification algorithms—effectively limiting the extraction of curated observations from field deployments. Holography offers relatively simple coherent microscopy designs with non-intrusive 3-D image information, and rapid frame rates that support data-driven plankton imaging tasks. Classification benchmarks across different domains have been set with transfer learning approaches, focused on repurposing pre-trained, state-of-the-art deep learning models as classifiers to learn new image features without protracted model training times. Combining the data production of holography, digital image processing, and computer vision could improve in-situ monitoring of plankton communities and contribute to sampling the diversity of microbial eukaryotes.ResultsHere we use a light and portable digital in-line holographic microscope (The HoloSea) with maximum optical resolution of 1.5 μm, intensity-based object detection through a volume, and four different pre-trained convolutional neural networks to classify > 3800 micro-mesoplankton (> 20 μm) images across 19 classes. The maximum classifier performance was quickly achieved for each convolutional neural network during training and reached F1-scores > 89%. Taking classification further, we show that off-the-shelf classifiers perform strongly across every decision threshold for ranking a majority of the plankton classes.ConclusionThese results show compelling baselines for classifying holographic plankton images, both rare and plentiful, including several dinoflagellate and diatom groups. These results also support a broader potential for deployable holographic microscopes to sample diverse microbial eukaryotic communities, and its use for high-throughput plankton monitoring.

Highlights

  • Plankton are foundational to marine food webs and an important feature for characterizing ocean health

  • The purpose of this study is to show whether species of micro-mesoplankton can be detected in-focus from volumetric samples, classified with deep learning algorithms, and to evaluate classifiers with threshold-independent metrics—which, to date, are rarely considered for imbalanced plankton classification tasks

  • The numerical holograms reconstruction, regions of interest (ROIs) clustering, and autofocusing that compose our multi-stage detection steps generated 3826 in-focus plankton objects from 19 classes (Fig. 2)

Read more

Summary

Introduction

Plankton are foundational to marine food webs and an important feature for characterizing ocean health. Recent developments in quantitative imaging devices provide in-flow high-throughput sampling from bulk volumes—opening new ecological challenges exploring microbial eukaryotic variation and diversity, alongside technical hurdles to automate classification from large datasets. Imaging instruments have used a variety of optical methods including flow cytometry [4], shadowgraphs [5], holography [6], among others Several such devices have imaged plankton size classes that collectively encompass autotrophs and heterotrophs, spanning four orders of magnitude in size from 2 μm to 10 cm [3, 7, 8]. The high sampling frequency from digital imaging opens new ecological challenges exploring microbial eukaryotic diversity [9], alongside technical challenges to automate classification from spatial and temporally dense datasets (e.g., [10, 11])

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.