Abstract

Radio Occultation (RO) is pivotal for profiling the neutral and ionized atmosphere, with the PlanetiQ mission, via its GNOMES satellites, striving to establish an advanced atmospheric observing system. However, an assessment of the spatiotemporal distributions of PlanetiQ observations and comparisons with reliable datasets are lacking. This study addresses this gap by examining the temporal and spatial distribution of RO observations from PlanetiQ during its initial 198 operational days in 2023, alongside comparisons with COSMIC and Numerical Weather Prediction (NWP) models. Data from GN02, GN03, and GN04 satellites, yielding 1099, 1313, and 1843 RO events per day, respectively, were analyzed. The satellite constellation’s observations demonstrate a generally well-distributed pattern, albeit minor deficiencies in equatorial and polar regions. Single-profile comparisons with COSMIC data reveal strong correlations for pressure, temperature, Water Vapor Pressure (WVP), and refractivity profiles, with temperature exhibiting larger variations (RMSE = 1.24 °C). Statistical analyses confirm statistically insignificant differences between the PlanetiQ and COSMIC profiles at the same spatio-temporal coordinates. Comparisons with NWP models show slight differences with GFS, with overall RMSE values of 0.23 mb (WVP), 0.6 mb (pressure), 1.3 (refractivity), and 1.5 °C (temperature). However, assessments against GFS/ECMWF models indicate overall compatibility, with insignificant differences between PlanetiQ profiles and model observations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.