Abstract
It is difficult to imagine a planet formation model that does not at some stage include a gravitationally unstable disc. Initially unstable gas–dust discs may form planets directly, but the high surface density required has motivated the alternative that gravitational instability occurs in a dust sub-layer only after grains have grown large enough by electrostatic sticking. Although such growth up to the instability stage is efficient for laminar discs, previous research concluded that realistic disc turbulence catastrophically increases the settling time, thereby requiring additional processes to facilitate planet formation on the needed time scales. We develop a different model for the influence of turbulence on the collisional velocity of grains and on the scale height of the dust layer and find that the earlier conclusions must be revisited. The model produces a disc-radius dependent time scale to reach a gravitationally unstable phase of planet formation. For a range of dust sticking and disc parameters, we find that for viscosity parameters α⩽10−3, this time scale is short enough over a significant range in radii R that turbulence does not catastrophically slow the early phases of planet formation, even in the absence of agglomeration enhancement agents like vortices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.