Abstract
Most experimental investigations on planetary-scale waves in the mesosphere and lower thermosphere (MLT) region are based on single-station or -satellite spectral analysis methods, which suffer from intrinsic spectral aliasing/ambiguity. To overcome the aliasing, the author has developed and utilized dual- and multi-station spectral methods in a series of recent works. These methods were implemented on meteor radar observations and surface magnetometer observations. In the implements, a variety of waves were discovered or investigated in terms of seasonal variations and responses to sudden stratospheric warming events, such as lunar and solar tides (migrating and non-migrating), Rossby wave normal modes, ultra-fast Kelvin waves, and secondary waves of wave–wave nonlinear interactions between the previous waves. The current paper illustrates these methods using synthetic data, comparatively reviews the methods and results in plain language, and proposes a new representation, termed the adjusted Feynman diagram, to summarize the nonlinear interactions and explain their implications.Graphical
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.