Abstract

Lidar backscatter signal resulting from laser light scattering from the aerosol and molecular in the atmosphere contains various information about the geometrical and physical properties of aerosol and molecular. The lidar backscatter signal can provide information about the planetary boundary layer (PBL) stratification by using aerosol as a tracer for convective and mixing processes. A PBL height and structure detecting technique based on the fractal dimension of three-wavelength backscatter signals is advanced. In this PBL height detecting technique, the three-wavelength backscatter signals are obtained by the Hampton University (HU, 37.02° N, 76.33° W) lidar. The fractal dimension was calculated using the three-wavelength lidar signals. The PBL heights obtained from fractal dimension of threewavelength lidar signals is compared with PBL heights obtained from the potential temperature profiles which are provided by NASA Langely Research Center (10 miles from HU). And results of the two methods agree well. Moreover, fractal dimension method can reduce the influence of the geometrical form factor on the PBL detecting to expand the detecting range of PBL and remove the effect of plume. Also, the fractal dimension method can show the PBL dynamics and the PBL evolution clearly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.