Abstract

A plane wave spectrum method of Gaussian beams can be derived by using Davis' approximations for the vector potential. An equivalent vector potential is introduced by considering the inverse Fourier transform of the spectrum function of the original vector potential in a given plane. The electromagnetic field, which corresponds to the equivalent vector potential, satisfies Maxwell's equations and can be written as a sum of plane waves. The beam shape coefficients, or the expansion coefficients in terms of regular spherical vector wave functions, are expressed as simple integrals. This version of the plane wave spectrum method offers the possibility to compute higher-order corrections for Gaussian beams.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.