Abstract

We compare plane-wave, coordinate-space and moment methods for evaluating operator-product expansion (OPE) coefficients of the light-quark and gluon condensates. Equivalence of these methods for quark condensate contributions is proven to all orders in the quark mass parameterm. The three methods are also shown to yield equivalent gluon condensate contributions to two-current correlation functions, regardless of the gauge chosen for external gluon fields in the coordinate space approach. An improved method for evaluating quarkcondensate OPE coefficients is presented for several (two-current) correlation functions. Gauge-dependent Green functions are also discussed. It is shown that contradictory expressions for the gluon-condensate contribution to the quark propagator occurring from the plane-wave and coordinate-space approaches yield identical relations between the heavy-quark and gluon condensates, as anticipated from the gauge invariance of the heavy-quark expansion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.